(0) Obligation:

The Runtime Complexity (innermost) of the given CpxTRS could be proven to be BOUNDS(1, n^2).


The TRS R consists of the following rules:

p(0) → 0
p(s(x)) → x
le(0, y) → true
le(s(x), 0) → false
le(s(x), s(y)) → le(x, y)
minus(x, 0) → x
minus(x, s(y)) → if(le(x, s(y)), 0, p(minus(x, p(s(y)))))
if(true, x, y) → x
if(false, x, y) → y

Rewrite Strategy: INNERMOST

(1) TrsToWeightedTrsProof (BOTH BOUNDS(ID, ID) transformation)

Transformed TRS to weighted TRS

(2) Obligation:

The Runtime Complexity (innermost) of the given CpxWeightedTrs could be proven to be BOUNDS(1, n^2).


The TRS R consists of the following rules:

p(0) → 0 [1]
p(s(x)) → x [1]
le(0, y) → true [1]
le(s(x), 0) → false [1]
le(s(x), s(y)) → le(x, y) [1]
minus(x, 0) → x [1]
minus(x, s(y)) → if(le(x, s(y)), 0, p(minus(x, p(s(y))))) [1]
if(true, x, y) → x [1]
if(false, x, y) → y [1]

Rewrite Strategy: INNERMOST

(3) TypeInferenceProof (BOTH BOUNDS(ID, ID) transformation)

Infered types.

(4) Obligation:

Runtime Complexity Weighted TRS with Types.
The TRS R consists of the following rules:

p(0) → 0 [1]
p(s(x)) → x [1]
le(0, y) → true [1]
le(s(x), 0) → false [1]
le(s(x), s(y)) → le(x, y) [1]
minus(x, 0) → x [1]
minus(x, s(y)) → if(le(x, s(y)), 0, p(minus(x, p(s(y))))) [1]
if(true, x, y) → x [1]
if(false, x, y) → y [1]

The TRS has the following type information:
p :: 0:s → 0:s
0 :: 0:s
s :: 0:s → 0:s
le :: 0:s → 0:s → true:false
true :: true:false
false :: true:false
minus :: 0:s → 0:s → 0:s
if :: true:false → 0:s → 0:s → 0:s

Rewrite Strategy: INNERMOST

(5) CompletionProof (UPPER BOUND(ID) transformation)

The transformation into a RNTS is sound, since:

(a) The obligation is a constructor system where every type has a constant constructor,

(b) The following defined symbols do not have to be completely defined, as they can never occur inside other defined symbols:
none

(c) The following functions are completely defined:


le
p
minus
if

Due to the following rules being added:
none

And the following fresh constants: none

(6) Obligation:

Runtime Complexity Weighted TRS where critical functions are completely defined. The underlying TRS is:

Runtime Complexity Weighted TRS with Types.
The TRS R consists of the following rules:

p(0) → 0 [1]
p(s(x)) → x [1]
le(0, y) → true [1]
le(s(x), 0) → false [1]
le(s(x), s(y)) → le(x, y) [1]
minus(x, 0) → x [1]
minus(x, s(y)) → if(le(x, s(y)), 0, p(minus(x, p(s(y))))) [1]
if(true, x, y) → x [1]
if(false, x, y) → y [1]

The TRS has the following type information:
p :: 0:s → 0:s
0 :: 0:s
s :: 0:s → 0:s
le :: 0:s → 0:s → true:false
true :: true:false
false :: true:false
minus :: 0:s → 0:s → 0:s
if :: true:false → 0:s → 0:s → 0:s

Rewrite Strategy: INNERMOST

(7) NarrowingProof (BOTH BOUNDS(ID, ID) transformation)

Narrowed the inner basic terms of all right-hand sides by a single narrowing step.

(8) Obligation:

Runtime Complexity Weighted TRS where critical functions are completely defined. The underlying TRS is:

Runtime Complexity Weighted TRS with Types.
The TRS R consists of the following rules:

p(0) → 0 [1]
p(s(x)) → x [1]
le(0, y) → true [1]
le(s(x), 0) → false [1]
le(s(x), s(y)) → le(x, y) [1]
minus(x, 0) → x [1]
minus(0, s(y)) → if(true, 0, p(minus(0, y))) [3]
minus(s(x'), s(y)) → if(le(x', y), 0, p(minus(s(x'), y))) [3]
if(true, x, y) → x [1]
if(false, x, y) → y [1]

The TRS has the following type information:
p :: 0:s → 0:s
0 :: 0:s
s :: 0:s → 0:s
le :: 0:s → 0:s → true:false
true :: true:false
false :: true:false
minus :: 0:s → 0:s → 0:s
if :: true:false → 0:s → 0:s → 0:s

Rewrite Strategy: INNERMOST

(9) CpxTypedWeightedTrsToRntsProof (UPPER BOUND(ID) transformation)

Transformed the TRS into an over-approximating RNTS by (improved) Size Abstraction.
The constant constructors are abstracted as follows:

0 => 0
true => 1
false => 0

(10) Obligation:

Complexity RNTS consisting of the following rules:

if(z, z', z'') -{ 1 }→ x :|: z' = x, z'' = y, z = 1, x >= 0, y >= 0
if(z, z', z'') -{ 1 }→ y :|: z' = x, z'' = y, x >= 0, y >= 0, z = 0
le(z, z') -{ 1 }→ le(x, y) :|: z' = 1 + y, x >= 0, y >= 0, z = 1 + x
le(z, z') -{ 1 }→ 1 :|: y >= 0, z = 0, z' = y
le(z, z') -{ 1 }→ 0 :|: x >= 0, z = 1 + x, z' = 0
minus(z, z') -{ 1 }→ x :|: x >= 0, z = x, z' = 0
minus(z, z') -{ 3 }→ if(le(x', y), 0, p(minus(1 + x', y))) :|: z = 1 + x', z' = 1 + y, x' >= 0, y >= 0
minus(z, z') -{ 3 }→ if(1, 0, p(minus(0, y))) :|: z' = 1 + y, y >= 0, z = 0
p(z) -{ 1 }→ x :|: x >= 0, z = 1 + x
p(z) -{ 1 }→ 0 :|: z = 0

(11) InliningProof (UPPER BOUND(ID) transformation)

Inlined the following terminating rules on right-hand sides where appropriate:

p(z) -{ 1 }→ 0 :|: z = 0
p(z) -{ 1 }→ x :|: x >= 0, z = 1 + x
if(z, z', z'') -{ 1 }→ x :|: z' = x, z'' = y, z = 1, x >= 0, y >= 0
if(z, z', z'') -{ 1 }→ y :|: z' = x, z'' = y, x >= 0, y >= 0, z = 0

(12) Obligation:

Complexity RNTS consisting of the following rules:

if(z, z', z'') -{ 1 }→ x :|: z' = x, z'' = y, z = 1, x >= 0, y >= 0
if(z, z', z'') -{ 1 }→ y :|: z' = x, z'' = y, x >= 0, y >= 0, z = 0
le(z, z') -{ 1 }→ le(x, y) :|: z' = 1 + y, x >= 0, y >= 0, z = 1 + x
le(z, z') -{ 1 }→ 1 :|: y >= 0, z = 0, z' = y
le(z, z') -{ 1 }→ 0 :|: x >= 0, z = 1 + x, z' = 0
minus(z, z') -{ 1 }→ x :|: x >= 0, z = x, z' = 0
minus(z, z') -{ 3 }→ if(le(x', y), 0, p(minus(1 + x', y))) :|: z = 1 + x', z' = 1 + y, x' >= 0, y >= 0
minus(z, z') -{ 3 }→ if(1, 0, p(minus(0, y))) :|: z' = 1 + y, y >= 0, z = 0
p(z) -{ 1 }→ x :|: x >= 0, z = 1 + x
p(z) -{ 1 }→ 0 :|: z = 0

(13) SimplificationProof (BOTH BOUNDS(ID, ID) transformation)

Simplified the RNTS by moving equalities from the constraints into the right-hand sides.

(14) Obligation:

Complexity RNTS consisting of the following rules:

if(z, z', z'') -{ 1 }→ z' :|: z = 1, z' >= 0, z'' >= 0
if(z, z', z'') -{ 1 }→ z'' :|: z' >= 0, z'' >= 0, z = 0
le(z, z') -{ 1 }→ le(z - 1, z' - 1) :|: z - 1 >= 0, z' - 1 >= 0
le(z, z') -{ 1 }→ 1 :|: z' >= 0, z = 0
le(z, z') -{ 1 }→ 0 :|: z - 1 >= 0, z' = 0
minus(z, z') -{ 1 }→ z :|: z >= 0, z' = 0
minus(z, z') -{ 3 }→ if(le(z - 1, z' - 1), 0, p(minus(1 + (z - 1), z' - 1))) :|: z - 1 >= 0, z' - 1 >= 0
minus(z, z') -{ 3 }→ if(1, 0, p(minus(0, z' - 1))) :|: z' - 1 >= 0, z = 0
p(z) -{ 1 }→ 0 :|: z = 0
p(z) -{ 1 }→ z - 1 :|: z - 1 >= 0

(15) CpxRntsAnalysisOrderProof (BOTH BOUNDS(ID, ID) transformation)

Found the following analysis order by SCC decomposition:

{ le }
{ if }
{ p }
{ minus }

(16) Obligation:

Complexity RNTS consisting of the following rules:

if(z, z', z'') -{ 1 }→ z' :|: z = 1, z' >= 0, z'' >= 0
if(z, z', z'') -{ 1 }→ z'' :|: z' >= 0, z'' >= 0, z = 0
le(z, z') -{ 1 }→ le(z - 1, z' - 1) :|: z - 1 >= 0, z' - 1 >= 0
le(z, z') -{ 1 }→ 1 :|: z' >= 0, z = 0
le(z, z') -{ 1 }→ 0 :|: z - 1 >= 0, z' = 0
minus(z, z') -{ 1 }→ z :|: z >= 0, z' = 0
minus(z, z') -{ 3 }→ if(le(z - 1, z' - 1), 0, p(minus(1 + (z - 1), z' - 1))) :|: z - 1 >= 0, z' - 1 >= 0
minus(z, z') -{ 3 }→ if(1, 0, p(minus(0, z' - 1))) :|: z' - 1 >= 0, z = 0
p(z) -{ 1 }→ 0 :|: z = 0
p(z) -{ 1 }→ z - 1 :|: z - 1 >= 0

Function symbols to be analyzed: {le}, {if}, {p}, {minus}

(17) IntTrsBoundProof (UPPER BOUND(ID) transformation)


Computed SIZE bound using CoFloCo for: le
after applying outer abstraction to obtain an ITS,
resulting in: O(1) with polynomial bound: 1

(18) Obligation:

Complexity RNTS consisting of the following rules:

if(z, z', z'') -{ 1 }→ z' :|: z = 1, z' >= 0, z'' >= 0
if(z, z', z'') -{ 1 }→ z'' :|: z' >= 0, z'' >= 0, z = 0
le(z, z') -{ 1 }→ le(z - 1, z' - 1) :|: z - 1 >= 0, z' - 1 >= 0
le(z, z') -{ 1 }→ 1 :|: z' >= 0, z = 0
le(z, z') -{ 1 }→ 0 :|: z - 1 >= 0, z' = 0
minus(z, z') -{ 1 }→ z :|: z >= 0, z' = 0
minus(z, z') -{ 3 }→ if(le(z - 1, z' - 1), 0, p(minus(1 + (z - 1), z' - 1))) :|: z - 1 >= 0, z' - 1 >= 0
minus(z, z') -{ 3 }→ if(1, 0, p(minus(0, z' - 1))) :|: z' - 1 >= 0, z = 0
p(z) -{ 1 }→ 0 :|: z = 0
p(z) -{ 1 }→ z - 1 :|: z - 1 >= 0

Function symbols to be analyzed: {le}, {if}, {p}, {minus}
Previous analysis results are:
le: runtime: ?, size: O(1) [1]

(19) IntTrsBoundProof (UPPER BOUND(ID) transformation)


Computed RUNTIME bound using PUBS for: le
after applying outer abstraction to obtain an ITS,
resulting in: O(n1) with polynomial bound: 1 + z'

(20) Obligation:

Complexity RNTS consisting of the following rules:

if(z, z', z'') -{ 1 }→ z' :|: z = 1, z' >= 0, z'' >= 0
if(z, z', z'') -{ 1 }→ z'' :|: z' >= 0, z'' >= 0, z = 0
le(z, z') -{ 1 }→ le(z - 1, z' - 1) :|: z - 1 >= 0, z' - 1 >= 0
le(z, z') -{ 1 }→ 1 :|: z' >= 0, z = 0
le(z, z') -{ 1 }→ 0 :|: z - 1 >= 0, z' = 0
minus(z, z') -{ 1 }→ z :|: z >= 0, z' = 0
minus(z, z') -{ 3 }→ if(le(z - 1, z' - 1), 0, p(minus(1 + (z - 1), z' - 1))) :|: z - 1 >= 0, z' - 1 >= 0
minus(z, z') -{ 3 }→ if(1, 0, p(minus(0, z' - 1))) :|: z' - 1 >= 0, z = 0
p(z) -{ 1 }→ 0 :|: z = 0
p(z) -{ 1 }→ z - 1 :|: z - 1 >= 0

Function symbols to be analyzed: {if}, {p}, {minus}
Previous analysis results are:
le: runtime: O(n1) [1 + z'], size: O(1) [1]

(21) ResultPropagationProof (UPPER BOUND(ID) transformation)

Applied inner abstraction using the recently inferred runtime/size bounds where possible.

(22) Obligation:

Complexity RNTS consisting of the following rules:

if(z, z', z'') -{ 1 }→ z' :|: z = 1, z' >= 0, z'' >= 0
if(z, z', z'') -{ 1 }→ z'' :|: z' >= 0, z'' >= 0, z = 0
le(z, z') -{ 1 + z' }→ s :|: s >= 0, s <= 1, z - 1 >= 0, z' - 1 >= 0
le(z, z') -{ 1 }→ 1 :|: z' >= 0, z = 0
le(z, z') -{ 1 }→ 0 :|: z - 1 >= 0, z' = 0
minus(z, z') -{ 1 }→ z :|: z >= 0, z' = 0
minus(z, z') -{ 3 + z' }→ if(s', 0, p(minus(1 + (z - 1), z' - 1))) :|: s' >= 0, s' <= 1, z - 1 >= 0, z' - 1 >= 0
minus(z, z') -{ 3 }→ if(1, 0, p(minus(0, z' - 1))) :|: z' - 1 >= 0, z = 0
p(z) -{ 1 }→ 0 :|: z = 0
p(z) -{ 1 }→ z - 1 :|: z - 1 >= 0

Function symbols to be analyzed: {if}, {p}, {minus}
Previous analysis results are:
le: runtime: O(n1) [1 + z'], size: O(1) [1]

(23) IntTrsBoundProof (UPPER BOUND(ID) transformation)


Computed SIZE bound using CoFloCo for: if
after applying outer abstraction to obtain an ITS,
resulting in: O(n1) with polynomial bound: z' + z''

(24) Obligation:

Complexity RNTS consisting of the following rules:

if(z, z', z'') -{ 1 }→ z' :|: z = 1, z' >= 0, z'' >= 0
if(z, z', z'') -{ 1 }→ z'' :|: z' >= 0, z'' >= 0, z = 0
le(z, z') -{ 1 + z' }→ s :|: s >= 0, s <= 1, z - 1 >= 0, z' - 1 >= 0
le(z, z') -{ 1 }→ 1 :|: z' >= 0, z = 0
le(z, z') -{ 1 }→ 0 :|: z - 1 >= 0, z' = 0
minus(z, z') -{ 1 }→ z :|: z >= 0, z' = 0
minus(z, z') -{ 3 + z' }→ if(s', 0, p(minus(1 + (z - 1), z' - 1))) :|: s' >= 0, s' <= 1, z - 1 >= 0, z' - 1 >= 0
minus(z, z') -{ 3 }→ if(1, 0, p(minus(0, z' - 1))) :|: z' - 1 >= 0, z = 0
p(z) -{ 1 }→ 0 :|: z = 0
p(z) -{ 1 }→ z - 1 :|: z - 1 >= 0

Function symbols to be analyzed: {if}, {p}, {minus}
Previous analysis results are:
le: runtime: O(n1) [1 + z'], size: O(1) [1]
if: runtime: ?, size: O(n1) [z' + z'']

(25) IntTrsBoundProof (UPPER BOUND(ID) transformation)


Computed RUNTIME bound using CoFloCo for: if
after applying outer abstraction to obtain an ITS,
resulting in: O(1) with polynomial bound: 1

(26) Obligation:

Complexity RNTS consisting of the following rules:

if(z, z', z'') -{ 1 }→ z' :|: z = 1, z' >= 0, z'' >= 0
if(z, z', z'') -{ 1 }→ z'' :|: z' >= 0, z'' >= 0, z = 0
le(z, z') -{ 1 + z' }→ s :|: s >= 0, s <= 1, z - 1 >= 0, z' - 1 >= 0
le(z, z') -{ 1 }→ 1 :|: z' >= 0, z = 0
le(z, z') -{ 1 }→ 0 :|: z - 1 >= 0, z' = 0
minus(z, z') -{ 1 }→ z :|: z >= 0, z' = 0
minus(z, z') -{ 3 + z' }→ if(s', 0, p(minus(1 + (z - 1), z' - 1))) :|: s' >= 0, s' <= 1, z - 1 >= 0, z' - 1 >= 0
minus(z, z') -{ 3 }→ if(1, 0, p(minus(0, z' - 1))) :|: z' - 1 >= 0, z = 0
p(z) -{ 1 }→ 0 :|: z = 0
p(z) -{ 1 }→ z - 1 :|: z - 1 >= 0

Function symbols to be analyzed: {p}, {minus}
Previous analysis results are:
le: runtime: O(n1) [1 + z'], size: O(1) [1]
if: runtime: O(1) [1], size: O(n1) [z' + z'']

(27) ResultPropagationProof (UPPER BOUND(ID) transformation)

Applied inner abstraction using the recently inferred runtime/size bounds where possible.

(28) Obligation:

Complexity RNTS consisting of the following rules:

if(z, z', z'') -{ 1 }→ z' :|: z = 1, z' >= 0, z'' >= 0
if(z, z', z'') -{ 1 }→ z'' :|: z' >= 0, z'' >= 0, z = 0
le(z, z') -{ 1 + z' }→ s :|: s >= 0, s <= 1, z - 1 >= 0, z' - 1 >= 0
le(z, z') -{ 1 }→ 1 :|: z' >= 0, z = 0
le(z, z') -{ 1 }→ 0 :|: z - 1 >= 0, z' = 0
minus(z, z') -{ 1 }→ z :|: z >= 0, z' = 0
minus(z, z') -{ 3 + z' }→ if(s', 0, p(minus(1 + (z - 1), z' - 1))) :|: s' >= 0, s' <= 1, z - 1 >= 0, z' - 1 >= 0
minus(z, z') -{ 3 }→ if(1, 0, p(minus(0, z' - 1))) :|: z' - 1 >= 0, z = 0
p(z) -{ 1 }→ 0 :|: z = 0
p(z) -{ 1 }→ z - 1 :|: z - 1 >= 0

Function symbols to be analyzed: {p}, {minus}
Previous analysis results are:
le: runtime: O(n1) [1 + z'], size: O(1) [1]
if: runtime: O(1) [1], size: O(n1) [z' + z'']

(29) IntTrsBoundProof (UPPER BOUND(ID) transformation)


Computed SIZE bound using KoAT for: p
after applying outer abstraction to obtain an ITS,
resulting in: O(n1) with polynomial bound: z

(30) Obligation:

Complexity RNTS consisting of the following rules:

if(z, z', z'') -{ 1 }→ z' :|: z = 1, z' >= 0, z'' >= 0
if(z, z', z'') -{ 1 }→ z'' :|: z' >= 0, z'' >= 0, z = 0
le(z, z') -{ 1 + z' }→ s :|: s >= 0, s <= 1, z - 1 >= 0, z' - 1 >= 0
le(z, z') -{ 1 }→ 1 :|: z' >= 0, z = 0
le(z, z') -{ 1 }→ 0 :|: z - 1 >= 0, z' = 0
minus(z, z') -{ 1 }→ z :|: z >= 0, z' = 0
minus(z, z') -{ 3 + z' }→ if(s', 0, p(minus(1 + (z - 1), z' - 1))) :|: s' >= 0, s' <= 1, z - 1 >= 0, z' - 1 >= 0
minus(z, z') -{ 3 }→ if(1, 0, p(minus(0, z' - 1))) :|: z' - 1 >= 0, z = 0
p(z) -{ 1 }→ 0 :|: z = 0
p(z) -{ 1 }→ z - 1 :|: z - 1 >= 0

Function symbols to be analyzed: {p}, {minus}
Previous analysis results are:
le: runtime: O(n1) [1 + z'], size: O(1) [1]
if: runtime: O(1) [1], size: O(n1) [z' + z'']
p: runtime: ?, size: O(n1) [z]

(31) IntTrsBoundProof (UPPER BOUND(ID) transformation)


Computed RUNTIME bound using CoFloCo for: p
after applying outer abstraction to obtain an ITS,
resulting in: O(1) with polynomial bound: 1

(32) Obligation:

Complexity RNTS consisting of the following rules:

if(z, z', z'') -{ 1 }→ z' :|: z = 1, z' >= 0, z'' >= 0
if(z, z', z'') -{ 1 }→ z'' :|: z' >= 0, z'' >= 0, z = 0
le(z, z') -{ 1 + z' }→ s :|: s >= 0, s <= 1, z - 1 >= 0, z' - 1 >= 0
le(z, z') -{ 1 }→ 1 :|: z' >= 0, z = 0
le(z, z') -{ 1 }→ 0 :|: z - 1 >= 0, z' = 0
minus(z, z') -{ 1 }→ z :|: z >= 0, z' = 0
minus(z, z') -{ 3 + z' }→ if(s', 0, p(minus(1 + (z - 1), z' - 1))) :|: s' >= 0, s' <= 1, z - 1 >= 0, z' - 1 >= 0
minus(z, z') -{ 3 }→ if(1, 0, p(minus(0, z' - 1))) :|: z' - 1 >= 0, z = 0
p(z) -{ 1 }→ 0 :|: z = 0
p(z) -{ 1 }→ z - 1 :|: z - 1 >= 0

Function symbols to be analyzed: {minus}
Previous analysis results are:
le: runtime: O(n1) [1 + z'], size: O(1) [1]
if: runtime: O(1) [1], size: O(n1) [z' + z'']
p: runtime: O(1) [1], size: O(n1) [z]

(33) ResultPropagationProof (UPPER BOUND(ID) transformation)

Applied inner abstraction using the recently inferred runtime/size bounds where possible.

(34) Obligation:

Complexity RNTS consisting of the following rules:

if(z, z', z'') -{ 1 }→ z' :|: z = 1, z' >= 0, z'' >= 0
if(z, z', z'') -{ 1 }→ z'' :|: z' >= 0, z'' >= 0, z = 0
le(z, z') -{ 1 + z' }→ s :|: s >= 0, s <= 1, z - 1 >= 0, z' - 1 >= 0
le(z, z') -{ 1 }→ 1 :|: z' >= 0, z = 0
le(z, z') -{ 1 }→ 0 :|: z - 1 >= 0, z' = 0
minus(z, z') -{ 1 }→ z :|: z >= 0, z' = 0
minus(z, z') -{ 3 + z' }→ if(s', 0, p(minus(1 + (z - 1), z' - 1))) :|: s' >= 0, s' <= 1, z - 1 >= 0, z' - 1 >= 0
minus(z, z') -{ 3 }→ if(1, 0, p(minus(0, z' - 1))) :|: z' - 1 >= 0, z = 0
p(z) -{ 1 }→ 0 :|: z = 0
p(z) -{ 1 }→ z - 1 :|: z - 1 >= 0

Function symbols to be analyzed: {minus}
Previous analysis results are:
le: runtime: O(n1) [1 + z'], size: O(1) [1]
if: runtime: O(1) [1], size: O(n1) [z' + z'']
p: runtime: O(1) [1], size: O(n1) [z]

(35) IntTrsBoundProof (UPPER BOUND(ID) transformation)


Computed SIZE bound using CoFloCo for: minus
after applying outer abstraction to obtain an ITS,
resulting in: O(n1) with polynomial bound: z

(36) Obligation:

Complexity RNTS consisting of the following rules:

if(z, z', z'') -{ 1 }→ z' :|: z = 1, z' >= 0, z'' >= 0
if(z, z', z'') -{ 1 }→ z'' :|: z' >= 0, z'' >= 0, z = 0
le(z, z') -{ 1 + z' }→ s :|: s >= 0, s <= 1, z - 1 >= 0, z' - 1 >= 0
le(z, z') -{ 1 }→ 1 :|: z' >= 0, z = 0
le(z, z') -{ 1 }→ 0 :|: z - 1 >= 0, z' = 0
minus(z, z') -{ 1 }→ z :|: z >= 0, z' = 0
minus(z, z') -{ 3 + z' }→ if(s', 0, p(minus(1 + (z - 1), z' - 1))) :|: s' >= 0, s' <= 1, z - 1 >= 0, z' - 1 >= 0
minus(z, z') -{ 3 }→ if(1, 0, p(minus(0, z' - 1))) :|: z' - 1 >= 0, z = 0
p(z) -{ 1 }→ 0 :|: z = 0
p(z) -{ 1 }→ z - 1 :|: z - 1 >= 0

Function symbols to be analyzed: {minus}
Previous analysis results are:
le: runtime: O(n1) [1 + z'], size: O(1) [1]
if: runtime: O(1) [1], size: O(n1) [z' + z'']
p: runtime: O(1) [1], size: O(n1) [z]
minus: runtime: ?, size: O(n1) [z]

(37) IntTrsBoundProof (UPPER BOUND(ID) transformation)


Computed RUNTIME bound using CoFloCo for: minus
after applying outer abstraction to obtain an ITS,
resulting in: O(n2) with polynomial bound: 1 + 5·z' + z'2

(38) Obligation:

Complexity RNTS consisting of the following rules:

if(z, z', z'') -{ 1 }→ z' :|: z = 1, z' >= 0, z'' >= 0
if(z, z', z'') -{ 1 }→ z'' :|: z' >= 0, z'' >= 0, z = 0
le(z, z') -{ 1 + z' }→ s :|: s >= 0, s <= 1, z - 1 >= 0, z' - 1 >= 0
le(z, z') -{ 1 }→ 1 :|: z' >= 0, z = 0
le(z, z') -{ 1 }→ 0 :|: z - 1 >= 0, z' = 0
minus(z, z') -{ 1 }→ z :|: z >= 0, z' = 0
minus(z, z') -{ 3 + z' }→ if(s', 0, p(minus(1 + (z - 1), z' - 1))) :|: s' >= 0, s' <= 1, z - 1 >= 0, z' - 1 >= 0
minus(z, z') -{ 3 }→ if(1, 0, p(minus(0, z' - 1))) :|: z' - 1 >= 0, z = 0
p(z) -{ 1 }→ 0 :|: z = 0
p(z) -{ 1 }→ z - 1 :|: z - 1 >= 0

Function symbols to be analyzed:
Previous analysis results are:
le: runtime: O(n1) [1 + z'], size: O(1) [1]
if: runtime: O(1) [1], size: O(n1) [z' + z'']
p: runtime: O(1) [1], size: O(n1) [z]
minus: runtime: O(n2) [1 + 5·z' + z'2], size: O(n1) [z]

(39) FinalProof (EQUIVALENT transformation)

Computed overall runtime complexity

(40) BOUNDS(1, n^2)